1958年3月

セロファン

大日本セロファンK.K研究所* 森本和久

1. 緒 論

ビスコース法による再生繊維素製造法の発明は、1892年にCross, Bevanが青竹ソーダで処理して得たアルカリ繊維素に二酸化炭素を作用させたものが水に可溶なることを発見したことに始まり、このビスコースが硫酸と塩酸により処理し、繊維素は硫酸と塩酸の反応で生成することが近代レーヨン工業の母体となり、同時にセロファン製造工業が生まれた。維計はビスコースを硝子板の上に拡げ硫酸を作用させ、再生するという特異的な方法であり、出来たフィルムは透明度をもっていた。その後スイスの化学者J. Brandenbergerは1908年に始めて連続フィルムの製造試験機を作り、更にグリセリンなどの塩素アルコールを使用することにより、フィルムに柔軟性を与えることを発見し、1912年に現在行われている連続フィルム製造法を確立した。

セロファン製造の最初の工場は1913年にラ・セロファン会社よりフランスのペリゴに建設された。この頃のセロファンは宝石・化粧品の容器などの装飾品の包装に限られていましたが、1923年に至り、米国のデュボン会社は特許を譲り受け製造を開始し、その生産量が急激に増大すると、従ってその価格も低下し、一般商品の包装に使用されるようになった。

セロファンが食料品の分野に進出したときに、今迄問題にならなかった耐水性の悪い点、また透湿度が大きく商品を損なう水分を生することが出来ない欠点が目立って来た。商品の包装は単に外観等の装飾的な面のみでなく内容物を保護することができないため、今迄の外観を損することなく、透湿度を減少し耐水性を向上すると共に熱接着を得るセロファン製造の研究が進められた。かかる性質をもつ防湿セルロファンは1927年にデュボン会社により実用化された。この新しいフィルムは今までのセロファンの透明性、強靭性などの優れた特性の上に、さらに防湿性を与えると共に、接着剤を使わずにも高圧力でフィルムを接着することが出来るので、包装の機械化に促進し、幾千の新しい用途を開拓し、セロファンで包装された商品があらゆる家庭に入り込み親しまれるようになった。

* 大阪府高槻市不老川606

* 日本のセロファン年間生産量

の改善と相まって需要は急激に増大して来たので各社において増産計画が発展され、この数年のうちにパンセロフ

の相当量が防湿セロファンで置換されると考えられる。

* 日本における生産概況は戦前は年間30〜40万円生産
されてきたが、戦争により甚大な影響を与えた一時生産は激減した。しかし戦後の復活は目覚しく昭和31年度には114万連の生産を行っており、その後も15%は東南アジア、香港向に輸出されている。一方、防湿セロファンも約20万連生産されているが、最近一年のうちに大幅な増産が計画され具体化されつつあるので、昭和33年春には月産17万連、防湿セロファン5万連程度の生産設備をもつこととなる見込で、戦前のセロファン工業とはその技術、規模、品質ともに一新されるであろう。

2. セロファンの種類および用途

(1) 種類
セロファンは性能、厚さ、色、形によって色々な種類に分けられるが、普通セロファン（P.T.）と防湿セロファン（M.S.T.）の2種に大別される。P.T.は今までわれわれが知っているセロファンであり、その主成分は再生繊維素70〜90%、柔軟剤として多価アルコール2〜20%、他に水分6〜15%より成っている。M.S.T.はP.T.に防湿塗装したものであり、防湿性、熱接着性をもつている。色についてはP.T.、M.S.T.共に無色透明の物より、赤、橙、黄、緑、青紫などの種々に染色しえたものもある。厚みもいろいろ等級があるがP300が一番多く使用される標準品となっている。

取引されるセロファンの形によって平判物とロール物に区別され、平判の標準的な物は100×90cmで普通500枚（連）を単位として取引される。ロール物は巻取ロールで所定の巾で1000〜2000m巻取られ印刷あるあるいは包装の機械に使用される。

(2) 物理的特性
セロファンは細部に感じを与えるが、その強度は普通、外に大きく抗張力は殆ど鉄に比較してもかか、また破壊強度も大きいが、ただ引裂強度が弱、プラスチックフィルムに比べて弱く、セロファンの大きな欠点となっている。特に低湿度では水分が減少するに従い非常に弱くなる。透明性は非常に良好であり、可視光線は95%透過する。また紫外線、赤外線も良好透過することが知られている。水分の透過は普通のセロファンは非常に良いが、防湿セロファンは同じ厚さのポリエチレン・フィルムよりやや優れた防湿性をもつ、防湿フィルムとしては卓越した性能を持っている。他のガスに対しては殆ど透過性を示さない。

(3) 用途
セロファンの用途は主として商品の包装であるがその範囲は極めて広く、また防湿セロファンはその防湿性と共に熱接着性を持っていること、セロファンの強靭性がゆる緩和性に、より自動化機械を適用しているので、それらの面より新しい用途の開拓されるつつある。まだ最近になってポリエチレン、アルミ箔等とラミネートすることにより新しい包装材料としての用途が開けつつある。

第1表 ポリマーの主要成分

<table>
<thead>
<tr>
<th>番号</th>
<th>重量(100×90cm当)</th>
<th>厚み</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>27.0g</td>
<td>1.9〜2.1</td>
</tr>
<tr>
<td>400</td>
<td>36.0g</td>
<td>2.5〜2.7</td>
</tr>
<tr>
<td>600</td>
<td>54.0g</td>
<td>3.8〜4.1</td>
</tr>
</tbody>
</table>

3. セロファン製造工程
セロファン製造は大別するとビスコース工程、製膜工程、防湿塗装工程、仕上工程に分けられる。ビスコース
工程、製膜工程は他のビスコース工業と大差なく行われているので、次に防湿塗装工程を主に述べる。

(1) ビスコース工程、製膜工程
その概要を図に示す。

(2) 防湿加工工程

抄造機で巻取られたセルロースを防湿性あるいは接着性に優れた特性を持つ防湿セルロースに加工するために、塗装塗布、乾燥する工程である。

(1) 防湿塗料

防湿塗料は、セルロースの着色性、接着性を含む防湿性能を改善する役目をもつ基剤と、その塗料に防湿性を与える混和剤と、以上の図形を溶解する溶剤とよりなっている。

a) 基剤

基剤は接着性、セリカとの着色性、着色、印刷適性を支配し、また防湿剤を保持させる大切な目的をもつ、硝化、塩化ビニル、塩化ビニリデン、アクロリトリア、ゴム誘導体などの高耐湿性の高分子物が用いられるが、繊維素に対する着色性、フィルム同士の耐熱性、防湿性能などの相互に相反する性能を満足しないわけではないので非常に困難である。外国においては、低アルカリ含有量の硝化粘を主体とした防湿セロファンが大半であるが、わが国ではこれに関する特許の制限が緩和に至っていることから、工業的現状より塩化ビニル系が主に使われている。しかし、最近硝化紡系の防湿セロフォンも数社において工業化されつつある。この基剤については後に詳述する。

b) 防湿剤

基剤中に配合される防湿剤のものである。種々の合成樹脂が発表されているが、現在ではパラフィンルガムなどを配合する、1927年に発明された防湿セロフォンの防湿剤はこの混和剤を用いることにより、透明な防湿セロフォンが出来る見出しだったので、現在連続的に増している。配合剤は、一般的にいって混和剤を入ると接着性が減少するので白化を防ぐ防湿量を用い、パラフィンの2～4倍量が使用される。また塗膜に柔軟性を与えると共に、乾燥を促進する目的でD.B.P.、T.C.P.等の溶剤を配合する。

d) 溶剤

溶剤として要求される性質は、接着性を全く溶解除去し、共に乾燥中にラッカスによる白化を生じさせないよう
に、適当な凝点を持つことが必要で、そのために割合溶剤が用いられる。トルオールが主成分となりそれにエスチル類、ケトン類、アルコール類が配合される。

(ii) 塗布乾燥工程

(a) 塗 布
以上述べたようにして配合溶解された塗料は塗装機の浸漬槽に送られる。塗装機で巻取られたコロラフンは巻き取るから浸漬槽を通じ、塗料が全面に塗布されドーナターにより塗布量が調整される。塗膜の乾燥後の厚みは片面約1μの極めて薄いものである。

(b) 乾 燥
かくして塗装されたセロファンは熱風によって乾燥されるのであるが、セロフォンのパラフィンによる白化を防ぐため、乾燥温度はパラフィンの融点以上が必要である。とくに普通80〜110℃で行いられる。乾燥に使用された熱風は塗料回収工房に送られる。回収方法は活性炭吸着法、塩酸塩化法の何れかが用いられる。塗装工前は経済的に成立つか否かは塗料回収率にかかっているってしても過言ではない。

(c) 液湿
乾燥工程において多量の水分がセロフォンより除去されるのを目的に塗布を行えば水分を取きなくてはならないが、これにより継維の水分含量が外界の関係湿度に従って増減すること、耐風セロフォンは用いたパラフィンの融点近くになると透過湿度が急激に増大するということを利用し、高温高湿の塔を通じて湿らせることによって急速に液湿を行い、適当な柔軟性と強度性を回復させる。液湿部を出た耐風セロフォンは冷却し巻取機によって巻取られ耐風セロフォンロールとして仕上げ工房に送られる。

4. 防 湿 基 業
防湿塗装法としては上記した溶液塗装法の他に、塗装塗法、水溶性塗装塗法を用いる方法。ウィック スの懸濁液をこれを塗装する方法。ウィックを水に分散懸濁してこれをビスコースに混合して防風セロフォンを作る方法。フィルム上で重合反応を起こせて塗膜を作る方法。等様々な方法が開発されて用いられているが、防湿基業ともそれぞれの方法により異なるものが用いられている。乾燥セロフォンで、ここではこれのみについて述べる。

(i) 硝化綿
熱可塑性樹脂として最も古くから知られたものであり、従って硝化綿の繊維素に対する接着性のよい点、及び種々の可塑剤に対する相溶性の良い点より広く用いられている。硝化綿としては、S.S型。硝酸綿が用いられる。耐火綿を合わせて型に与えることにより種々の特性をもつ耐湿セロフォンが得られることを特徴とする。デュポンの製品はスノンドが硝化綿型であるといわれ、わが国で今後耐湿セロフォン用基業として多く用いられるもの一つとなるであろう。配合比の一例を挙げると硝化綿50部、ダンマー樹脂8部、ペトロックス樹脂8部、D.F.B.22部、D.C.H.P.9部、パラフィン3部である。

(ii) 塩化ビニール系樹脂
最近のビニール工業の発展によりビニール樹脂もしくは塩基型もしくは塩基型を用いるようになった。塩化ビニール系樹脂とセロフォンとの接着については、A.Mc Larenが広範囲な研究を行っており、またコッタが塩基型を用いる。Mc Larenは塩化ビニール・アクリロニトリル共重合物が多く用いられるが、この場合は無水マグレ酸イタコン酸等を共重合することによりセロフォンとの接着を増す方法が採られている。塩化ビニール樹脂は防湿性の点では次に述べる塩化ビニール樹脂に劣るが、安定であり塗料が比較的安価なものを用いうるという点から現在広く用いられている。

(3) 塩化ビニリデン樹脂
これは塩化ビニリデン塩化ビニール共重合物と塩化ビニリデン-アクリロニトリル共重合物の2種に分けられる。前者の場合は塩化ビニリデン樹脂で塗装することが最も簡単で、後者には塩化ビニリデン樹脂を用いた塩化ビニリデン-アクリロニトリルの2種に分けられる。前者の場合は塩粘続剤がすぐできるので塗料の選択が困難となる。塩化ビニリデン樹脂を用いた場合は水蒸気透過率が少ないことの他に、耐薬品性が大きい、耐水性が大きい、耐食性、耐熱安定性、耐劣化性が劣るなどの特徴をもつ。セロフォン用塩化ビニリデン樹脂
5. アンカーコーティング

防湿塗料を塗布する場合、基材に硝化樹脂を塗ると、セロファンと樹脂との接着性は成熟後約2年で不十分な場合も多い。故に塗料を塗布する前にセロファンをアンカーコーティングを施す方法が考えられる。アンカー処理に関しては多数の研究が行っているが、一例をあげると、

40%の"Beetle" M300（これは唾液のメラニン・ホルムアルデヒド樹脂の初期組合せ物）より20%のグリセリンを加え、十分混ぜして完全な分散液を作り、それに50%の乳酸30%を加え、さらに60%の冷水を加えて分散させる。この樹脂分散液に水及びグリセリンを加えて、グリセリン50%、樹脂40%、乳酸5%、水49.5%を溶かす。この浴にグリ状のセロファンを通し、ドライヤーで乾燥し、フィルムの中に樹脂1.2%、グリセリン20%を含むようになる。

かくの如くしてアンカー処理した原紙に防湿塗料を塗布すると、耐水性は非常に良いが150°Cの熱湯に1時間浸漬しても皮膜がセロファンから剥離せず、冷水中では数ヶ月間浸漬しても剥離しなくなる。またアンカー処理しない防湿セロファンの接着性は、樹脂濃度の高いところでは相当減少するが、アンカー処理したものは経時変化がほとんどない。

文献
1) U. S. 1,737,187
2) U. S. 2,159,151
3) U. S. 2,169,366
4) U. S. 2,061,374
5) U. S. 2,144,383
6) U. S. 2,316,274
7) A. D. McLaren, Paper Trade J. 125, 96, 98 (1947)
ibid. 126, 95, 139 (1948)
J. Pbym. Sci. 3, 652 (1948)
ibid. 4, 63, 408 (1949)
7, 289, 463 (1951)
8) 谷久雄 高分子展覧第1集 90頁
9) U. S. 2,570,478
10) P. Morgan, I. E. C. 48, 2296 (1953)
11) M. Kelly Modern Packaging 30, 151 (1957)
12) B. P. 626,895
B. P. 677,926

合成樹脂技研協会創立 合成樹脂技術研究協会発足にきかれて合成樹脂メーカー、加工業者、販売会社などが準備を進めていたが9月2日大阪市ビルにて創立総会を開き目的、役員選任を行った結果それぞれ次のように決定、事業を開始に至った。目的は製造技術および加工技術の研究改良、化学装置、金属加工、建材、原子力産業等の利用研究、応用分野の拡大をしようとするので学界的指導も求めていることになっている。

役員、会長、木村芳秀（木村鉄材機械社長）副会長、伊藤孝男、植村正彦、理事、庄司吉、木村孝、森田、金谷、伊藤、長谷川、住友、村上、大阪、共同、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪

ビールで塩ビ管指導 昨年12月第1回ビール貼合物質として塩ビ管360トンを輸出したがビール贴合物質に対する技術的指導を受けて来たので塩ビ管協会では会員会社の技術者派遣につき入院の結果塩ビ、関西、火事、長崎、波辺の二振りをこの協会派遣。滞在期間は3ヶ月の予定である。なお塩ビ業界ではこれに機会に東京都市場開拓の好機会とも内外の市場に成功させる技術を確実にすることになった。

塩ビ市場や伸展 塩ビビールもここでのほど7度塩ビ機能の需要実態をとりまとめたこれによると生産は7,800トンで6度7,200トンに近く800トン増産と共に一方出荷は8,490トン（6月7,810トン）と比較的順調な伸びを示した。特に輸出が前月の390トンに900トンに1,449トンに大幅に増加したことで7月在庫の減少は引き続き700トンに及んでいる。