大阪大学ナノサイエンス・ナノテクノロジーフォーラム
—21世紀の科学技術戦略—

北岡 良雄*

NanoScience-NanoTechnology Forum
—Strategy for Material Science and Technology towards New Century—

Key Words：Nano-science, Nano-technology, Nano-fabriactions, Nano-devices, Nano-Material

1. はじめに

原子・分子レベルを制御し、新しいナノマテリアル（本来原子の大きさは1オーダストーミ＝10^{-10}メートル, 1ナノ＝10オーダストーミ）を作るナノスケールで加工するように新しいナノデバイスを開発する“ナノサイエンス・ナノテクノロジー”は21世紀の物質・材料科学のもっとも大きなフロンティアであると考えられる。

このことも確証のように、昨年の1月21日にクリントン大統領によって打ち出されたアメリカのナノテクノロジーサイエンス戦略計画では、基本的な物性科学からエネルギー開発までを含み、ナノテクノロジーというキーワードで、物理、化学、材料などの科学者だけでなく、かなり分野の外れた研究者・技術者たちも協力して、このキーワードで物質科学を盛り上げようとしている。大学での基礎研究を中心として、科学技術政策が発動されている。またヨーロッパでは、“ナノエレクトロニクス”へのロードマップが作られて研究が強力に推進されている。

このような、世界的戦略は、日本の科学技術政策に大きな影響を及ぼしつつある。実質、ナノテクノロジーの分野の第1線で活躍中の研究者から開催された“ナノテクノロジーの戦略的推進に関する調査検討会”が科学技術庁および文部省（平成13年度からは、文部科学省）の主催で、通産省（旧名）の協力も得つつ、昨年10月より開催され、ナノテクノロジー研究の現状・今後の観点などの調査検討が行われている。「IT分野」と「バイオ分野」の技術展開で「後追い」をとった科学技術施策とは異なり、もちろん作り分野での優位に立つ日本がナノテクノロジーをたどる姿勢の表れといえよう。それらに、「IT分野」と「バイオ分野」で圧倒的な優位にあるアメリカが21世紀における「次世代の基幹科学技術」としてナノテクノロジーをターターゲットに定めたことに対する危機感が日本の科学技術施策の策定を促すことになっているようである。

アメリカがこの分野で日本を強く意識していることは、国1に示した「原子操作」で描かれた原子の「原子」の柄が化学科学技術会議（NSTF）から出された“ナノテクノロジーイニシアティブ計画レポート”に掲載されたことからも窺える。

* Yoshio KITAOKA
1951年7月15日生
1976年大阪大学大学院基礎工学研究科
修士課程・物理系物性奨学金
現任、大阪大学大学院基礎工学研究
科・物理系教授、理学博士
固体物理-低次物性-超電導物理工学・
磁気工学
TEL 06-6850-6435
FAX 06-6845-6432
E-mail kitaoka@mp.es.osaka-u.ac.jp
2. なぜ今、ナノサイエンス・ナノテクノロジー？

物質・材料を構成する原子・分子を直接観察し、かつ、思いどおり組み上げる科学技術を確立すれば、これまでの多くの努力がなされてきた。1980年代後半から、原子・分子を直接観察しながら、原子走査プローブ顕微鏡（STM, AFM）などの原子操作技術が現れ、ナノスケールの観測、操作が現実のものとなってきた。また、半導体技術が進歩し、その加工方法がナノメートルスケールに近づいてきたことも背景の一つである。このようなナノスケール領域においては、“人工的に”光ビームによって微細加工するだけでなく、“原子・分子の自己組織化現象”を利用することが有力な手段であることも分かってきた。実際、生物体の核の設計図にしたがって高分子（タンパク質など）を組み合わせて自己組織化し、組み上げる方法をとっている。すなわち、ナノスケールの原子・分子制御が始まりに相違がある情報によってなされ、物理・化学の発現の観点から、メソスコピックな大きさ、すなわち、数個の原子・分子が集合したモジュールが興味ある機能発現の最小単位となっている。このようなさまざまなナノスケールサイエンスとテクノロジーが現実のものとなり、それに向けての科学技術が重要課題となっている。

さて大阪大学においても、このような大きな流れ、または方向性を打ち出し、「IT」や「バイオ」に対する基幹科学技術である物質・材料科学を発展させるためのインセンティブとすることが必要である。大阪大学での関連分野のポテンシャルの情報発信は、すでにこの“生産と技術”で取り上げられている。「研究ノート」や「夢はバラ色」のなかから、取り上げる。S1号（1999）では、「ナノ構造による磁気特性効果の飛躍的増大は可能か？」山本孝夫氏（工学研究科）著では、「超常磁性ナノコンポジットでナノ構造による磁気特性効果の飛躍的增大が検討された」と報告されている。また続いて「機能性有機分子の表面二次元自己組織化構造の観察とその制御」桑原裕司、斎藤彰、吉野正和他氏（工学研究科）著では、「究極の人工ナノ構造の構築においては、原子操作の確率をあげるための様々なテクニックの困難さがあるとされた上で、以下の構築技術が提案されている。すなわち、もともと単体として様々な特性の可能性を秘めた機能性有機分子に注目し、さらにそれらの自己組織化、分子認識、局所化学反応等を制御することによる新しい人工ナノ構造の創製を試みるものである。」さらに、「夢はバラ色」では、「単一微粒子の光学異方性操作による光機能と反応の制御」増原宏司氏（工学研究科）では、「新しい学問体系を目指して進展している」との認識を示し、そのような典型的な系として光を用いた単一微粒子の研究例が紹介されている。「ナノメートルスケールの限定された空間をもつ微粒子は、電子、電子エネルギーを閉じ込んでその状態を変化させる。表面・界面が微粒子の物理的、化学的性質を決めることが多い。表面と内部が新しい構造、物理をもつことが期待される。したがって、電気、液体、固体に次ぐ第4の物理状態で、日常的生活に広く見られる、その光機能と反応の制御を自在に行うこと」が企図されている。またこのような取り組みは、一つの学問、技術で可能になるものではなく、分野横断的、境界領域のノーボードが必要不可欠と提言されている。このように大阪大学では、クリントン大統領の演説を待つまでもなく、ナノテクノロジーへの取り組みは既成の方向性として始まった。

このような状況の中、大阪大学の物質・材料科学研究所が分野横断的研究ネットワークあるいは、情報交換を推進できないかと、既存の横断的な組織である大阪大学物質・材料科学研究所推進機構（代表主任・冷水佐藤教授（大阪基礎工学研究所））で議論され、その結果、大阪大学との関連分野の研究ポータルシルの情報発信をするための具体的な活動として、企画されたのが「大阪大学ナノサイエンス・ナノテクノロジーフォーラム」である。この企画は、他大学や他の組織の研究コミュニティに、大阪大学の物質・材料科学研究所の成果や潜在能力を知って頂けることも期待されている。

実行委員会のメンバーは、冷水佐藤（基礎工）、呂顯和（理）、柳田邦三（工）、大中進雄（工）、大貫隆弘（理）、北野雅雄（基礎工）、川合知二（理研）、事務局メンバーは、原田明（理）、吉田輝（理）が名前である。平成12年度、第1回フォーラムは10月24日（火曜日）、第2回フォーラム、平成13年2月27日（火曜日）に開催された。事務局の予想を大きく上回る参加者で、この分野の関心の大きさを示した。図2に、フォーラムに参加された所属部
大阪大学・ナノサイエンス・ナノテクノロジー
フォーラムへの参加部局と識座表

図 2

局と講座名を示した。このように、大阪大学の関連研究分野のひろがりと普の高さが分かる、参考のために、講演者名と講演者のリストを図3に示す。如何に「ナノ」をキーワードした研究展開が分野横断的な学際研究であるかが分かる。

次に筆者の所属する基礎工学研究科物性物理科
学分野と合成化学分野でのナノサイエンス・ナノテクノロジーの研究動向を具体例として取り上げる

1. 「強磁性ナノコンタクトの創製と物性」：那須
三郎教授、小野顕男講師（物性物理科学分野）
達成目標：数原子で構成される安定な強磁性ナノコンタクトの創製
波及効果：研究がままでダウンサイジングが進んだ磁気
メモリ、磁気記録媒体の読み取りヘッド
等への応用

2. 「ナノ構造物質（巨大分子、超微粒子、超粒子）
と光との相互作用を用いた複合ナノ構造物質
の創成と光物性・機能の制御」：伊藤正教授、
張紀久夫教授（物性物理科学分野）、岡田正教
授、戸部義人教授、中戸教授（合成化学分野）
達成目標：ナノ構造物質（半導体・金属超格子、超
微粒子、微粒子配列、巨大分子、超分子、
生体複合分子等）に関して、光（電磁場）
との相互作用を通じて、ナノ構造・空間
を「作り」、「見て」、「使える」オプトナノ
サイエンスの物理・化学の新展開
波及効果：ナノサイエンスの物理と化学の融合によっ
てメソスコピック系の光科学の学際分野の
確立、生体分子複合体の構造とエネルギー
移動機構の解明、ナノ光エレクトロニクス
デバイスとフェムト秒制御技術の開拓

3. 「半導体ナノ細線を用いたオブトエレクトロン
ニクス」：冷水佐喜教授、下村哲雄教授
達成目標：高近一・高密度・高品質半導体量子ナノ
構造の面発光レーザーへの応用、面受光
型の新しいテラヘルツ領域の二次元アクセ
パイス
波及効果：超高速並列通信の実現、非使用波長領域
を用いたセンサー

—68—
「大阪大学第1回ナノサイエンス・ナノテクノロジー・フォーラム―21世紀の科学技術戦略―」
主催: 大阪大学材質・材料科学研究推進機構主催
日時: 平成32年10月24日（水曜日）10:00-17:45
会場: 館内会場（阪急・神戸ホール）
セッション[1]―ナノマテリアル (Nano-Material)
（発表者: 窪田清三）
(1) 「人工生体情報材料創製へのナノサイエンス」
川合知二 (論文)
(2) 「ナノマテリアルのデザイン」吉田博 (講演)
(3) 「ナノマテリアルの創製」
大内信雄 (工、化学・機能材料)
(4) 「分子デバイス創製」
原田明 (理、高分子)
(5) 「ナノスケールバイオ電子系の創製」
戸部聡人 (基礎工、化学系)
セッション[2]―ナノキャラクテリゼーション
(Nano-Characterization) （発表者: 川合知二）
(6) 「ナノスケールフォトニクス」
河田聡・井上俊志 (工、応用物理)
(7) 「ナノプローブによるキャラクタリゼーション」
森田幸三 (工、電子)
セッション[3]―ナノバイオサイエンス
(Nano-Bio Science) （発表者: 原田明）
(8) 「ナノ形態形成研究」近藤健人 (細胞工学センター)
(9) 「1分子バイオサイエンス」柳田敏雄 (医)
セッション[4]―ナノデバイス (Nano-Devices)
（発表者: 増原宏）
(10) 「ナノ量子デバイスプロセス」高崎裕 (歯科)
(11) 「半導体ナノ粒子構造による量子デバイス」
冷水佐浩・小村正樹 (基礎工、物理)
(12) 「ナノ構造によるオプトエレクトロニクス」
伊藤正 (基礎工、物理)
(13) 「電子コンピュータ」
北川暦 (基礎工、電気工学)
セッション[5]―ナノファブリケーション
(Nano-Fabrication) （発表者: 大仲信雄）
(14) 「ナノリソグラフィープロセスの開発と量子ビーム」
によるナノワイヤーの形成」田川慎一 (論文)
(15) 「ナノ光化学」 増原宏 (工、応用物理)
「大阪大学第2回ナノサイエンス・ナノテクノロジー・フォーラム―21世紀の科学技術戦略―」
主催: 大阪大学材質・材料科学研究推進機構主催
日時: 平成33年2月27日（火曜日）10:00-17:30
会場: 館内会場（阪急・神戸ホール）
懇親会会場: 館内会場（3階大会場）18:00-20:00
挨拶: 大阪大学ナノサイエンス・ナノテクノロジー統合リーダー
ワーキング部長 城野政弘（副学長、工、情報システム工学）
「ナノテクノロジーの戦略的推進に関する研究実績会」報告
川合知二 (論文)
セッション[1]―ナノマテリアル (Nano-Material)
（発表者: 川合知二）
(1) 「自己組織化、形態加工、機能化、精密導入による
ナノ機能体の創製」橋田、菊池（工、物理）
(2) 「構造が明確なナノサイズマテリアルの分子設計」
杉浦正一、坂田豊光 (論文)
(3) 「ナノマグネットラジオ」小野原男 (基礎工、物理)
(4) 「ナノコンポジットマテリアル」前原阿一 (論文)
(5) 「ナノ粒子の光学物理と光化学」
和田雄三 (工、物理・生命)
セッション[2]―ナノファブリケーション
(Nano-Fabrication) （発表者: 北村良雄）
(6) 「制御ノストラス応答型マレットスケール・バイオプロセス」
九保井亮一、馬場大 (基礎工、化学系)
(7) 「電子顕微による半導体ナノ構造の創製」
竹田清治 (理、物理)
(8) 「有機分子によるナノ空間の創製」
宮田 幹二 (工、物理・化学)
(9) 「分子自己組織化能による自織物のナノ構造体の形成」
中戸信雄 (基礎工、化学系)
(10) 「波流界面ナノ反応」渡河 仁 (理、化学)
セッション[3]―ナノバイオサイエンス
(Nano-Bio Science) （発表者: 原田明）
(11) 「ナノゲノム解析」福井裕一 (工、応用生物工学)
セッション[4]―ナノデバイス (Nano-Devices)
（発表者: 増原宏）
(12) 「半導体デバイス」 滝沢健次、若林富士男
(基礎工、電子工学)
(13) 「ナノ量子デバイスの創製と量子物理」野野正和
（工、精密科学専攻、理化学研究所波流界面工学）
(14) 「半導体量子変動」 亀藤 和晴 (理、物理)
(15) 「半導体量子ディットのテラヘルツ分光」
豊井研一 (理、物理)
4. 「単電子デバイス」：蒲生邦次教授、若宮雄二

男助手（電子黒光科学研究）

達成目標：フラーレンやカーボンナノチューブなど
の新材料を用いたリソグラフィーの限界
を超えたサイズの単電子デバイスの創製。

波及効果：室温で動作する単電子デバイスの実現。

他にも、化学系では、「分子系の自己組織化能による

ナノ構造物の開発」「ナノテクノロジーの応用

た無機粘土化合物触媒の活性化」、「ナノアーキテクチャーデザインによるエンドリーメリア触媒の開発」

「巨大金属ナノクラスター触媒の創製」「ナノ粒子

調整と材料化プロセスナノテクノロジー」などの

研究が展開されている。また他の理学系、工学系で

展開されている研究に関しては、計2回行われたフォーカル研究・フォーマル研究としてまとめられている。さらに詳しく知りたい場合は事務局の原田明教授（化学

研究科：harada@chem.sci.osaka-u.ac.jp）に照会

されたい。

3. おわりに

ここにきて世界は、急速にノーメートル科学技術

tと走りだしている。このような状況のもとで成熟

期を迎えたバルクの物質の構造、物性、応答、機能

の研究と、単一原子、単一分子のアプローチとの間

をどう接続するかが、重要な研究課題となっている

ことは言弁当もない。筆者は、固体物理の研究フ

ロンティアである数値が相互作用する電子系（強相関

電子系）で見出される磁気や超伝導現象などの物性発現

機構をミクロな研究手法である原子核磁気共鳴法

（NMR）で利用して研究を行っている。具体的に、ナ

ノサイエンス・ナノテクノロジー分野の研究を専門

にしている訳ではないが、ナノメータースケールの

電子状態がバルクの物性さえも支配している例を多

く見できた。NMRはご存知の方も多いと思うが、

現代科学の広範な分野で不可欠の研究手段となって

いる。固体物理も例外ではなく、最近注目されている

高温超伝導研究でも威力を発揮している。我々の

グループでは、科学技術振興事業団の戦略的基礎研

究プロジェクト「低温性能高温超伝導材料の開発」

（研究代表者・夏原豊雄）に参加して、サブナノスケー

ルでの材料の特性研究（ナノキャラクタリゼーション）

を行っている。そこで、ガス分子（超伝導の

発現を担う銅と酸素の二次元正方格子を基にした以上合

む系）では、ドープされているキャリアー数にサブ

ナノスケールで著しい差が生じる結果、材料特性の

ネットとなっていった臨界温度の異方向性が大きく改善

していることが分かった。このようなバーグの構造

と物性の発現は、サブナノスケールでの操作によってよ

り効率的に人工的に制御できることを示唆している。

さまざまな物質系をサブナノスケールで作り、観察し、測

定し、解析し、評価し、操ることが必要となってき

ている。この分野では、日本は確実もあり、さらなる

潜在能力をもちろ「先導的な研究展開」が可能であ

る。今まで得られなかった有用な物質・材料を生み

出し、新しい超高温、超高圧、極微デバイス・シ

ステムを作り上げるための「基礎科学」として重要

だけただけでなく、人類の生活を直接より集団に

する新技術としても極めて新しい研究領域である。今

後、活性の研究ネットワークを構築し、有機的な

ナノサイエンス・ナノテクノロジーに関する研究

を展開するのに、さらに協調的に展開することが、人

学に求められている。このような先端科学技術と

外的の科学技術の持続的な発展は、有為な人材の輩

出にのぞみ、到底望めない。この点からも、大学での

教育・研究体制の整備、あるいは再構築は必須であると考えられる。

—70—