高信頼性技術に基づく「分析・物性評価、先端技術調査、及び技術調査研究レポート販売」

企業リポート

中山 陽一

“Contract Research, Material Analysis for Trouble Shooting, Study of High-tech Material, and Publication of Technological Report” Based on Advanced and Trustworthy Technology

Key Words: Contract Research, Analysis, Report, Technology and Trust

1. 会社概要

社名: 株式会社東リリサーチセンター
英文名稱: Toray Research Center, Inc.
本社所在地: 〒103-0022

東京都中央区日本橋室町3-1-8
設立: 1978年6月1日
資本金: 2億5千万円（出資資本10億円）
代表者: 代表取締役社長 林 健二
従業員数: 470名（平成16年12月末）
分野: 分析・物性評価、先端技術調査、技術調査研究レポート販売

URL: http://www.toray-research.co.jp/

2. TRCの活動と体制

株式会社東リリサーチセンター（TRC）は、東レ株式会社の研究開発部門の分析・物性評価グループを母体とし、高度な技術で社会に貢献することを目指して、1978年に設立されました。本年6月で27周年を迎え、TRCの活動の概要についてご紹介します。

TRCの主な業務分野構成は、①分析・物性評価、②先端技術・市場調査、③技術調査研究レポート販売です。設立時の主体であった①(分析・物性評価)が現在も大きな柱です。①・②・③とも、お客様へお渡しする「製品」は、原則として、「報告書」です。

TRCの活動は、少数ながらベテラン組成とイノベーションが織り交ぜられた、①で活動の一環に含まれます。

①で対象とする産業分野は、「エレクトロニクス」、「工業材料」、「環境・エネルギー」、「医薬・バイオ」、「その他」と幅広い分野に亘っています。①における分野別比率(2003年度)を図1に示します。

もっともエレクトロニクスや工業材料の比率が高い中で、近年、医薬・バイオの比率が高まってまいります。

会社全体の売上構成も、設立時の1978年度に比べ、約14倍になっています。こういった活動の主体となるグループとしては、研究部門・調査研究部門・営業部門の3部門があり、相互に連携した活動を行っています。また、今後の新たな組織として、管理部・総務部に加え、品質保証部があります。

ここでは、研究部門の活動を中心に紹介し、品質
保証についても簡単に触れることにします。
(1) 研究部門の活動
第一の活動は、労働部門を通じて生産した分析・
特性評価業務の遂行です。基盤研究における各々を
データの取得、発表用における客の現象のメカ
ニズムの解明、製造物品あるいは製品において問題
解決などが挙げられます。その際、機密保持のと
た信頼性の高い技術でお客様（主に研究・生産の専
門家）の満足を満たすことが肝要です。そのために
は、分析・特性評価技術として一歩のものををきめ
こするとともに、製造品・製品・プロセスに関する技術
上の知識を身に付けることが必要です。TRCでは、
原則として、分析担当者が客の試料のサンプリング
から測定、分析・特性評価、解析、報告書作成なら
びお客様への説明に因る一貫した業務を遂行できる
自己完結型の教育を実施しています。また、社内外
のセミナー等に積極的に参加させることで、重要な
素材・製品に関する最新の情報を得る機会を設けて
います。受託分析の性質によっては、複数の分析を
適用する必要が生じます。そういった場合、データー
マークのリーダーのもとに、関係する分析担当者が分担
かつ協調することにより、総合的な解釈に結びつけ
られる体制となっています。
毎年7月には、ボスターセッションを開催し、各
分析担当者が最新の技術を紹介することでお客様と
の直接連絡の機会を設けています。2004年度は、横
浜・大阪・名古屋で開催し、計約1,000名のお客
様に出席いただきました。
世界水準での最新の分析・評価技術を整備する上
で、日常の分析活動における創意工夫とともに、
新規分析技術及び装置の導入を進めています。例え
ば、ナノテクノロジーにおける評価手法として近年
発展の著しい走査型プローブ顕微鏡(SPM)は、
IBMのBinnigとRohrerによる走査型トンネル顕微
鏡(STM)の発明(1982年)に端を発します。弊社で
は、早くからSTMの将来性に着目し、1987年に電
磁顕微鏡(当時)のグループに加わって基礎的な検討を
始め、1989年に市販装置導入に至らして受託分析を開始
しました。1991年には原子間力顕微鏡(AFM)を導
入しましたが、AFMは現在に至るまでSPMの主要
な手法として活躍しています。1997年には、スイス・
バーゼル大学のH.-J. Güntherodt教授のもとへ
SPMの研究者が留学し、SPM技術を応用した超高
速度顕微鏡の研究を行っています。さらに、1997年
から、半導体デバイスのドーパント分布を評価する
走査型キャパシタンス顕微鏡(ScM)の受託を開始し、
2001年には同じ用途の走査型原子力顕微鏡
(SSRM)を導入しました。この2手法は、半導体デ
バイスの有力な評価手法として注目されています。
なお、こうした海外研究機関によるTRC社員の
派遣先としては、1991年から現在にかけて、スウェー
デン・ウプサラ大学(電子光電子分光法：ESCA)、
米国・オハイオ州立大学(ラマン分光法)、ドイツ・
ミュンスター大学(飛行時間型スイッシュ分光学
計：TOF-SIMS)のような表面・微小部の化学構造
解析手法分野から英国・ノックスフォード大学(核
磁気共鳴分光法：NMR)、米国・ハーバード大学
(ゲノム解析技術)などの生物科学分野に至る第一線
の研究機関約16件があります。
受託分析においても、前記の点評める専門分析機
関との提携を実施しており、お客様からの種々の
要請にお応えできる環境を保っています。
最近の新規導入装置の例としては、ナノメートル
領域のトモグラフィー観察が可能な高分解能分析電
子顕微鏡:JEM2100F、官能基の微小領域分析用と
して顕微赤外イメージングシステム(空間分解能:
約6μm):Spotlight3000、元素・官能基の表面微小
部分析が可能なX線光電子分光(ESCA、XPS)装置、
QuanterX:KSM(空間分解能:約10μm)、従来困難
であった微細な試料や試験などの構造解析に威力を
発揮する期待されるタモグラフ・ドープル・ナノ
化・ファサード・フローニ＝空気条件型分析計(MALDI/TOF-
MS)：AXIMA-QIT、物質動態分析用としての液体
クロマトグラフ/クロマトグラフ質量分析計(LCMS/MS)、
API4000及びTSQ Quantum、環境分析用途での
高分解能ガスクロマトグラフ質量分析計(GCMS/MS)、
AutoSpec-Ultima NTなど、種々の分野における
最新の機器が拡がられています。
一方、国家プロジェクトをも含む多くの段階から
発生して、科学技術プロジェクト「表面界面の制御技
術」(1981～1986年)を始めて計18件を受託してい
ます。このうち、新エネルギー・産業技術総合開
発機構(NEDO)「次世代半導体デバイス用高密度化
実装技術のための基盤技術開発」、NEDO(社)バ
イオ産業情報化コンソーシアム(JBIC)「生体高分子
立体構造情報解析プロジェクト」などに参加してい
る。
解析(プロテインファクトリー)プロジェクト』, 科学技術振興事業団(JST)「CREST新世代カーボンナノチューブの製製, 評価と応用」, NEDO「平成15年度基盤技術研究促進事業(民間基盤技術研究支援制度)」近接場利共生次世代カソードミネッセス及びラマン分光装置開発」の計5件が現在進行中です。
こうして技術開発された研究成果のうち公開できる内容については, 積極的に社外発表を行っています。社外発表は, 対外的な波及効果だけではなく, 人材育成にも有効であり, 会社としても推奨しています。過去21年間の発表件数を表1に示します。

表1. TRC社員の社外発表件数(1984〜2004年)

<table>
<thead>
<tr>
<th>内容</th>
<th>数</th>
</tr>
</thead>
<tbody>
<tr>
<td>原著論文</td>
<td>356件 (英文: 302, 邦文: 54)</td>
</tr>
<tr>
<td>講演・解説・単行本 (分担執筆を含む)</td>
<td>244件</td>
</tr>
<tr>
<td>学会発表(口頭・ポスター)</td>
<td>1315件 (国際会議: 331, 国内学会: 984)</td>
</tr>
<tr>
<td>学会関係のセミナー・講演会での講演</td>
<td>401件</td>
</tr>
</tbody>
</table>

#1 大学等の他の研究機関との共同発表を含む。
#2 国内内外で開催された国際会議を含む。

このような環境の中で, 社外研究者, 含む16名の研究者が学位 (博士号) を取得しています。
また, 知的財産の活用活用の観点から, 特許出願等の活動も着実に実施しています。
(2) 品質保証体制
お客様からのご依頼に対し, 「信頼性の高い報告書によってお応えする」観点から, 国際標準であるISO9001を基本とした品質保証体制を構築しています。国内の受託分析会社として初めて, 1999年に, 営業部門も含めた全社一体としての認証を取得しました。「経営理念: 高度な技術をもって社会に貢献する」のもとに「顧客満足」, 「機密厳守」, 「高信頼性技術」, 「品質安定・向上」の品質方針を掲げています。
また, トキシコチキティクス測定に関する医薬品GLPの適合確認での評価「A」認定, 環境分析研究部門の特定計量証明事業者認定制度 (MLAP) の認定およびISO14001環境マネジメントシステム登録などが挙げられます。

3. まとめ

TRCは, 設立の理念である「高度な技術で社会に貢献する」を旨とし, T&T (Technology and Trust) のもとに, ナノテクノロジー・バイオテクノロジーなどの最先端技術の進展に対応できる分析・物性評価あるいは技術調査における技術力を一層向上させ, 産業界・学界への更なる貢献をさせていただけるよう努めています。

TRCは, お客様・共同研究者及び提携機関など接近の方々とともに成長を続ける会社です。今後とも, 皆様のご指導・鞭撻をお願い申し上げます。

4. 参考資料

TRCの活動については, “The TRC News”(年4回発行)及びホームページで紹介しています。ホームページで会員登録をしていただくことで, TRCニュースのPDFファイル版へのアクセスが可能です。
1) URL http://www.toray-research.co.jp/
2) T&T(Technology and Trust)「信頼性の高い技術を提供させていただくこと」(Technology)及び「機密保持を厳守すること」(Trust)。