阪大産研Lバンド電子ライナックの大規模改修

研究ノート

Large-Scale Remodeling of the L-Band Electron Linac at ISIR, Osaka University

Key Words: linac, electron, beam, L-band, stability

1. 序 論

大阪大学産業工学研究所以のLバンド電子ライナック（Lバンドライナック）は、附属放射線実験所（当時）の主力装置として建設され、昭和53年（西暦1978年）に運転を開始した。強力な超短時間パルス放射線発生装置と名付けられたLバンドライナックは、エネルギーや38 MeVで長さ約20ピコ秒の大強度、単一パルス電子ビームを発生することがで、パルスラジオ波検波法による放射線化学応答の反応初期過程の研究を中心に様々な研究分野で利用されてきた。最近では、時間分解能がサブピコ秒に達するレーザー同期超高速パルスラジオ波検波法の開発とその利用や、遠赤外自由電子レーサー（FEL）の開発研究。第4世代の放射光源として期待されているSASE（Self-Amplified Spontaneous Emission）の遠赤外領域での基礎研究なども行なわれている。また、その利用も産学だけではなく大阪大学に開放されると共に、産業研究との共同研究という形態で学外からの利用にも一部供されている。

平成14年に放射線実験所と高次インタマティリアル研究センターを中心とした改組統合して産業科学ノク学プロジェクトセンターが誕生した。その際、Lバンドライナックを改修する予算が認められ、性能を大幅に向上させる大規模な改修が行なった。ライナックの建設と立上げ調整が完了した後、平成16年10月1日より利用研究が再開されて、順調に稼動している。大阪産研のLバンド電子ライナックの大規模改修と現状について紹介する。

2. 目的と方針

先端的なラジウム比の発生と利用のためにLバンドライナックに求められる性能は、動作の安定性と再現性である。Lバンドライナックは、昭和33年に建設されて以来、多くの改良がなされてきたとはいえ、電子ライナックとビームラインの電源系や、冷却水などの設備は、老朽化と性能の問題化のために、安定性が十分でない、結果として電子ビームの特性が長期・短期的に変動する原因となっている。これらの電源系を制御し再現性を確保するための制御系は、入出力装置としてアナログのヘリカルやメカニカルを使用した手動の運転操作盤で構成されており、運転状態の再現性に問題があったし、数の熟練運転者1か運転調整が出来なかった。従って、今日の改修では、ライナックの基本構成要素である電子管や、加速管、偏波磁石や四極磁石などの電磁石群は現状のままであるが、これらの問題を解決するために、Lバンド電子ライナックのほとんど全ての電源系と設備関係の機器を、最新の技術による安定性と再現性の良い機器に更新する。これらの機器を接続して運転する制御系には、デジタル的に設定と読み出しが出来る計算機制御システムを新たに対象にして、運転状態の再現性を向上させると共に、加速器の運転モード切替が短時間に且つ容易に出るよう、非熟練の利用者にも加速器システムの運転がワンナックで出来るようにする。

更に、加速器の安定性の改善と、Lバンドライナックを用いて行なわれているレーザー同期の超高速パルスラジオ波検波法の時間分解能を向上させるため
新しいタイミングシステムを導入する。また、更新する高周波電源類の仕様を変更して、流体外フェルの出力を拡張領域に達するまで高めるために必要不可欠である。ラニック電子ビームの長パルス運転を可能とする。

3. 改造の詳細

図1にLバンドライニックが設置されているライニック棟地下2階の平面図を示す。ライニックの改造は、入射系と、RF系、ビーム輸送系、タイミング系、制御系、ならびに設備系にわたるほとんど全ての部分に対して行った。入射系は、電子ビームを発生する電子顎と、大深度電子ビームを生成するために使用するリブハーモニック反応器（SHB）システムから構成される。電子顎に関しては、高圧電源ユニットの電源を安定化電源へ交換し、その他の部分も計画機制御システムへ適合するように改造、交換した。SHBシステムでは、108MHzで動作する2台のRFアンプと、216MHzアンプ1台を使用しているが、その3台の増幅器を、計算機制御可能で、長い電子パルス運転に対応した高安定なものに更新した。

RF系は、1.3GHzのハイパワー高周波を発生しており、プラウンチャーやパラミッター、加速管に伝信する装置である。RFの発生には、従来、20MWと5MWのクライストロンそれぞれ1台を使用していたが、新しいシステムでは、30MWクライストロン1台を使用する。それに伴い、クライストロン用電源であるキッレーターを更新し、RF伝送路を一部更新して組み換えた。クライストロンとモジュレーターは、高い精度と安定性を目指に設計・製作したが、従来と同じく4μsのパルス幅だけではなく、8μsの長パルスモードも回路の切り替えにより実現できることで伝送路では、組み換えるために新しいパワーモニタリング器や可変減衰器を導入する一方、従来から使用している移相器や可変減衰器も計算機制御に対応するために改造した。

ビーム輸送系は、ライニックで加速した電子ビームを、実験用ビームポートまで輸送する装置であるが、ここに使用する偏極磁石や四極磁石などの電磁石用電源の大半を更新した。これらの電源は、計算機制御に適応するインタフェースを備え、従来の電源より格段に安定である。

新しいタイミングシステムは、高い時間安定性を持ち、パルオーム原子時計を時間基準とする周波数シンセサイザーで加速周波数の1.3GHzを発生すると共に、それを直接分周することにより、SHBシステム用RF周波数と、パルスラジオを使った
ルーザー用RF周波数を48分割した27MHz信号をタイミングシステムのクロックとする。このクロックを用いたデジタルディレイやNIMの論理ジオールと組み合わせて、精度でかつ反復型が容易なタイミングシステムを低価格で実現した。

新しい制御系は、パソコン（PC）とプログラマブルコントローラー（PLC）をネットワークで接続した分散制御システムである。制御機器は、各所に配置したPLCに接続して制御するが、これらのPLCと1台のPCはFL-netと呼ばれる通信ネットワークで接続されており、PLC-net上のデータ領域を作共有することにより相互に通信を行なっている。他方、このPCは通常のユーザーネットで、制御端として使用する複数のPCと接続されている。このような制御システムを新たに構築して、従来のアナログ・手動制御システムに置き換えた。

今回の改修で更新に導入された設備は、冷却水装置とクライストン室の空調機である。新しい冷却水システムは、旧システムより1桁近く高い安定度を持ち、温度に敏感で重要な装置である加速管などを土0.03度以内に温度制御することが出来ると、クライストン室の温度は従来、3度程度変動して、RF変動の原因になっていた。そこでインパーター方式の空調機を追加した結果、温湿度は短時間変動で0.3度程度、長時間変動で1度以下に抑えられることが確認できた。

4. 加速器の立上げと性能評価

新たに装置したハンドライナック用機器の運行調整が平成15年の春に終わり、引き続き計算機制御システムの立て上げ調整を開始した。計算機制御システムと制御対象機器の信号の取り合いを一つ一つ点検して、ハードとソフトの不具合を修正する作業を行い、平成15年秋に制御系の立ち上げ作業が完了した。その後に、本格的な加速器の立て上げ作業を開始した。大きな問題は、主にRFパワー伝送路で発生した。クライストンの出力パワーを上げていくと、伝送路で放電が起こり、それ以上出力パワーを上げることが出来なくなった。放電箇所を特定するために、RFパワー伝送路を分解して、各所に模擬負荷を挿入して動作試験を行なった。その結果、タイムスターと呼ばれる導波管の断面形状を90度回転するための

新設部品2箇所と、従来から使用していた加速管用移相器で放電が発生していることが確認できた。タイムスターは、その構造に問題が有ることが分かったので、放電が起きない構造に改造した。移相器に関しては、修理や変更が不可能であるので、新たな移相器を購入して交換することにした。この結果、大きな放電は無くなったが、RFパワーが薄く変動する原因不明の現象が残った。原因を特定するために、RFパワー伝送路を何度も分解点検を行ない調査を続けだが、クライストン出入口近辺でも観測されて、伝送路が原因ではなく、クライストンまたはその上流に問題があると結論された。この問題、従来から使用していたRF発振器とタイミングシステムを使用しては研究16年の春に新しいタイミングシステムの準備が整い、これに交換したところ、RFパワーの細かい変動が無くなった。従来から使用していたRF発振器に問題があることがわかり、原因不明のこの問題はより強く解決できた。

電子ビーム加速用RFの安定性を決める、クライストン電圧のパルスの出力安定度は、仕様値である0.1%を達成した。パルス電圧の平坦度も仕様値の2.0%は満足されていたが、これを0.1%以下にするためにPFNの段数を増やすことを計画している。試験的には、回路定数の見直しにより、フラットトップ5.5μsで0.1%の平坦度が確認できた。実際のRF出力の時間変動をパッチャー加速管のダミーロード側と主加速管のダミーロード側で測定して、安定度を調べた。RF出力の時間変動は標準偏差でパッチャーが0.14%，主加速管が0.11%であった。

タイミングシステムに関しても格段の性能向上が実現できる。旧システムでは回路上の問題から、電子管とクライストンとの間にタイミング遅延1-digit分（36ns）のスッターが存在していた。最も多くの使用される運動モードの一つである過度モードでは、このスッターはそのままエネルギージャッターとなっていただけ、新システムではこれがなくなった。また1.3GHzの基準RF信号と電子管トリガーとの間に時間スッターはおよそ5μs程度、分隔された各RF信号と1.3GHz基準RF信号との位相スッターは2μs程度であった。

過度モードでビームの安定性を測定した。このモードではSHBシステムは使用せず、ノリバッチャー,
パンチ、主加速管ののみを動揺する。改造後のシステムではこの3台の加速管は同じクライストコーンにより駆動されるので、以前に存在した2つのRF源間の位置ジェッターは無くなる。結果的に、短周期的なビームの安定性は、クライストコーンRF出力の振幅変動に強く依存すると考えられる。長周期的なビームの安定性については、これ以外に電子ケーブルのカソード温度のドリフト、冷凝水温度や冷蔵温度の間隙変動が関与ってくる。

図2に第2点電子ビームブート（図中下）のコアモニターで測定したビーム電流強度分布を示す。ビーム電流の標準偏差は0.39%であった。このビーム強度変動は、改造前の10分の1程度の値である。

5. まとめ

阪大産研のLバンドライナックは、今回の改造により、ビーム電流やエネルギーの安定性が格段に向上了。また、新たに導入した計算機制御システムにより、熟練者でなくとも、加速器の立ち上げや停止を含む運用を容易に行なえるようになった。立ち上げ調整が短時間で行なえるようになった。利用時間が実質的に増える。さらに、Lバンドライナックのマシンタイムは、従来1日単位で分配使用されていたが、今後、1日の利用を前半、後半に分け、別のグループが使用したり、夜間の利用を可能にする基盤も整いつつある。また、Lバンドライナックの安定性が格段に向上了ことにより、先端的な量子ビームの発生と利用も大いに促進することが期待できる。加速器の安定性が向上したことにより、今まで見ることが出来なかった小さな不安定性を引き起こす要因も観測ができるようになった。今後、これらの現象を研究することにより、更にLバンドライナックの安定性と性能の向上を目指す。

この記事をお読みになり、著者の研究室の訪問を希望の方は、当協会事務局へご連絡ください。事務局で著者と日程を調整して、お申し立たせいたします。

申し込み期限：本誌発行後2か月後の月末日

申し込み先：生産技術振興協会 tel 06-6395-4895 E-mail seisan@maple.ocn.ne.jp

必要な事項：お名前、ご所属、希望日時（選択の幅も含めてください）、複数人の場合はそれぞれのお名前、ご所属、代表者の連絡先

著者の都合でご希望に沿えない場合もありますので、予めご了承ください。

—54—