手のひらサイズの質量分析計の開発

技倉解説

Development of a small size Multi-turn Time-of-Flight Mass Spectrometers 'MULTUM S'.
Key Words : Multi turn time of flight mass spectrometer

1. はじめに

質量分析装置は、その名のとおりイオンの質量を測定する装置である。しかし質量分析計の用途は多岐にわたっている。質量分析計の特徴として、1) 同位体存在度の測定が可能であること、2) 感度であることが、3) ガス、固体、無機物、有機物など測定対象の幅が広いこと4) タンデム質量分析 (MS/MS) により、分子の構造情報が得られること等が挙げられる。

同位体比測定では、隕石中の種々の元素の測定による太陽系起源の理解、地上の岩石や隕石の年代測定など宇宙科学や地球科学への応用がある。また、地下から湧き出るガスの2H、3He比の時間的変化から地震の予知が可能とも言われている。呼気ガス測定による肺機能測定やビリル疸の検査、代謝物測定による病気の診断等、医学・薬学への応用がある。

高度度を生かした測定では、微量のたん白質や遺伝子の測定による生命科学や創薬への応用、内分泌系の動態、細胞内変化（細胞ホルモン）測定、水道水中の微量物質測定等がある。

MS/MS測定では1段目の質量分析計で質量分離し、そのイオンをガスとの衝突光によって解離し、2段目の質量分析計でそのフラグメントを測定する。

ことによって、たん白質のアミノ酸配列決定、遺伝子の構造決定のようにこれまで試験管の中で行われていたことを質量分析計で高感度に行われるようになってきた。

質量分野計には構造、四極極型、イオントラップ型、飛行時間型、フーリエ変換イオンサイクルトロン型等があり、それぞれ長所、短所を持っている。分解能は10程度から、数十万程度のものが有り、用途によって分解能優先のもの、感度優先のものがある。これまでの質量分析装置は海外の真ん中にシリンジとえられているものが多く、価格も高いというのが実態であり、小型で携帯可能なものは、ごく例外的に製作されてきた。しかしながら小型で携帯可能な質量分析計の用途としては、内分泌系の動態、頂温ガス等の環境物質の測定観測、ロケット搭載による惑星探査、火山ガスや海洋中の種々のガス分析、事故や事故現場の有害ガス分析、テロや無差し、生物兵器検出、空港での麻薬、爆発物検知等のような応用での可能性は多岐にわたる。数年前に南極隕石に火星由来の隕石があり、微生物の痕跡らしいものが発見されたというニュースがあったが、火星由来と判断された隕石はバイキング計画で実際に火星に持っていった質量分析計による火星大気の希ガス分析結果と南極隕石の希ガス同位体比が一致したことである。

小型の質量分析計としては構造、イオントラップ型、四極極型、飛行時間型が主流に作られてきたが、いずれも分解能に問題があった。しかしながら近年、レーザトロニックスの発展やコンピュータの進歩によって、かつて飛行時間型質量分析計の弱点であった低分解能が克服されつつあり、高分解能かつ高感度の飛行時間型質量分析計が出現しつつある。飛行時間型質量分析計の分解能向上にはイオンパケットの縮小、検出器の応答時間の改良等々あるが、一番
大きな効果が期待されるのは飛行時間の伸長である。したがって、分解能を上げようとするとき加速電圧を落とすか、飛行距離を伸ばすか、あるいはこの両方を採用することである。加速電圧を落とすこと はイオンの引き出し効率を下げ、エネルギー幅の加速エネルギーに対する割合を大きくし、分解能の低下や検出器でのイオンー電子交換効率の悪化等デメリットの一方大きい。一方、飛行距離を伸ばすこと は装置の大型化につながる。しかし、同じ軌道を何回も周回させることができるとき、小型でも飛行距離 伸ばすことが可能になる。私たちはこのような考 えで、8字型の軌道を取るマルチトン飛行時間型 質量分析計「MULTUM」を設計製作し、分解能 35万を達成した。この装置は電場半径5cmで、イ オン源と検出器を除いた分析部の大きさは40cm× 40cmの合計に加え、変動の一定度を持つものである。そこで更 なる小型で携帯可能な装置の原型モデルとしてこの 装置の1/2モデルを製作することにした。

2. 装置概要

今回製作した小型質量分析計の周回部分は MULTUM IIのサイズを1/2にしたイオン光学系 を採用した。図1に、イオン軌道シミュレーション の結果を示す。MULTUM IIはトロイダル電場4 個だけで完全収束条件を満たす光学系で、さまざまな初期位置・角度・エネルギーを持ったイオンは、周回後には出発した状態と全く同じ状態で戻ってき ることがわかる。飛行時間に関しても、さまざまな初期条件を持つ同時に出発したイオンは、周回 後、同時に到着する。

これまでのMULTUMでは、多重周回部分にイオ ンを入射するため、多重周回に用いる扇形電場に穴を開け、扇形電場電圧をパルス制御していた。 しかしながら、この方法では、より小さくなった扇形電場の 穴に、電場の乱れを補正するために細線（グリッド） を設ける事が難しい。そこで今回開発した装置では、 多重周回に用いる扇形電場とは別の扇形電場をイオ ンの入射角に導入し、多重周回に用いる電場電圧 は一定にしている。このため、入射用の電場と周回部 分の2つの電場と出射用電場を使って時間フォーカス するように設計した。出射用扇形電場にイオン 通過用の穴があいているが、この場は入射用の時の み電圧をかけ、周回時アース電圧に落としているの で、電場の多少の乱れは問題がない。これにより、 多重周回に必要な電場電源はパルスコントロールす る必要がなくなり、電源の安定度を容易に高める事 ができる。図1に今回開発した質量分析計の全体図 を示す。

製作上の容易さから4つの電場と出射用電場の 半径は同じにし（25mm）、しかも入射用電場の 偏角も同じにした。イオン源はWiley-McLarenタイプ 電離加速型イオン源を使用し、検出器にはイ クロチャンネルプレート（F4655-13、浜松ホトニクス（株））を使用した。

3. 装置製作

イオンパケットを多重周回させるためには、扇形 電場の位置決めが非常に重要である。特に多重周回 用扇形電場に関しては、わずかにずれてもイオンが 何周もするうちにだんだん中心軌道からずれる影響 が大きい。扇形電場を配置するポイントは水平方向、 高さ方向、回転方向の3つである。また、イオン源、 検出器についても扇形電場に対しての正直な配置が 必要である。今回の製作では次のような配置法を用 いた。
まず、扇形電場をそれぞれ1つずつ扇形のブレードまたは構成する。この扇形ブレードには扇形電場の曲率半径の中心にあたる場所に穴があけた。これに対し、扇形電場を固定するベースブレート上にもフラッシュ盤によって扇形電場の曲率半径の中心位置を正確に出し、そこに穴を開け位置決め用ノブを設けた。イオン源や検出器の場所も差しに固定のネジ穴をあけて定めた。ベースブレートと扇形電場のノブを回転軸で扇形ブレートの穴を固定し、軸に対して回転させることで水平方向と回転方向を調整した。これらの方法を用いる事により、NC工作機械を使用せず、手持ちの汎用工作機械だけで製作することができた。ベースブレートに6つの扇形電場を配置した写真を図3に示す。

図3 ベースブレートに固定した6つの扇形電場

4. 実験結果

多重層回収器への入射および回収後のイオンの放出は各々の扇形電場において図4に示すようなタイミングスケールを用いることで制御した。ベースのタイミングスケールにはデジタルパターンジェネレーター（Model 555 Pulse Generator, Berkeley Nucleonics, CA, USA）を用いた。

イオン源でパルス化されたイオンパケットは、入射電場を通過する。イオンが回転し、まるまでに入射電場をアース電位に落とすことでイオンを入射電場にあけられた穴を通じ抜け回を続ける。

希望した周回数イオンが回収した後、出射電場に所定の電圧を印加しイオンを検出器の方に出射し飛行時間スペクトルを得る。この間、多重層回路扇形電場には、常に一定の電圧を印加している。検出器からの出力はデジタルオシロスコープで取

図4 タイミングチャート

り込み、5,000回試算平均を行った。

装置の性能評価は、Xeガスを用いて行った。電子の加速電圧は70eV、イオンの加速電圧1.55kV、Xe導入時の真空度は5.0×10⁻⁷Paで、イオンを11周させる事ことができた。この時の質量分解能m/Dmは4,800であった。回周回4周、3周、2周、1周の飛行時間スペクトルを図5に示す。0周測定されるスペクトルはXeの中性二価イオンである。1回のスペクトルからの回転では完全に飛行時間を飛行時間が短くなっている事がわかる。イオン強度が大幅に減少しているが、この理由は汎用工作機械の乱れを用いた事による4つの多重層回路電場の製作精度によるものと思われる。

5. おわりに

手のひらサイズの携帯型質量分析計を目指し、従来の多重層回収型装置である‘MTM’または'IIM’の光学系を用いる。ポータブル化のためのサイズを絞り1/2倍の質量分析計を設計製作した。これにより、イオン源、分析部、検出器をすべて含まれてしまうネットワーク20cm×36cmのブレート上に収めた。NC旋盤、NCフライス盤等を使用せず汎用工作機械のみを用いて工作を行ったにもかかわらず、Xeイオンが11周させる事ができることを確認した。このときの質量分解能は4,800であり、従来の直線型飛行時間質量分析計では約7μmに相当する。また、多重層回路駆動へ入射射用扇形電場を用いて弾力方向からイオンパケットを入射することに成功した。
今後，製作精度を上げ、さらに真空ポンプとその電源を含めた電気系の小型化により、充分携帯可能な飛行時間型質量分析計として将来活躍すると思われる。

謝辞

今回の開発は、内田智（修士卒業）君の卒業研究としておこなわれ、入射イオン工学の設計と測定は彼の果業であります。また、豊田助教授、石原助教授等の開発されたMULTUMの光学系が大変優れたものである事が再確認できました。久留島五雄教授には今日まで工作機械の使い方からはじめに質量分析全般にわたってご指導いただきました。深く感謝いたします。

参考文献

1) 豊田智隆, 生産と技術, 52 (2000), 63-66.

図5 Xe周位体測定TOPスペクトル
（イオン強度は0周のXe⁺のピークの高さを1に規格化した。）