

# ピコ秒レーザー超音波スペクトロスコピーによる ナノ薄膜の弾性定数の精密測定

# 荻 博 次\*

Precise measurement of elastic constants of ultrathin films using picosecond laser ultrasound spectroscopy Key Words : thin film, elastic constants, picosecond ultrasound

1.はじめに

弾性定数は物質の変形抵抗を規定する量であり, あらゆる構造物の設計において必要とされる. MEMS や NEMS の構成材料であるナノ薄膜(膜厚 <~100 nm)に対しても例外ではなく,デバイス の設計時には弾性定数が必要とされる.特に,高周 波バンドパスフィルタである弾性波デバイスにおい ては,それを構成する薄膜の弾性定数がフィルタの 中心周波数を決定するため,重要な設計因子となる. しかし,ナノ薄膜においては一般的にバルクの弾性 定数を使用することができない.非晶質部や粒界の 不完全結合部などが存在し,バルク値を大きく下回 ることが多く [1-3],また,巨大な弾性ひずみや表 面エネルギの作用により,バルク値を上回ることも あるためである [4, 5]. 実用的・学術的意義の高さ のため,ナノ薄膜の弾性定数を計測する手法が世界 中で研究されてきたが,形状の制約のため,精密測 定は極めて困難であった.

近年,筆者らは,極短パルス光によって薄膜内に 励起した超高周波弾性波を用いて,精密に薄膜の弾 性定数を測定する手法を確立した.これをピコ秒レ ーザー超音波スペクトロスコピー法と呼び[4-7], 多種の薄膜やナノワイヤの弾性定数と内部組織との 関係を探究している.本稿においては,この手法の 原理について解説し,いくつかの測定結果を紹介す



\* Hirotsugu OGI

1967年11月生 現在、大阪大学 大学院基礎工学研究科 准教授 博士(工学) ナノメカニクス, 弾性波デバイス TEL:06-6850-6187 FAX:06-6850-6187 E-mail:ogi@me.es.osaka-u.ac.jp る.

2. 測定手法

計測法の根本原理は,ポンプ・プローブ音響計測 に従う [8, 9]. 例えば, 金属薄膜にレーザー光をほ んの一瞬(~百フェムト秒)だけ照射する場合を考 える.照射箇所の温度は瞬間的に上昇して熱応力が 発生し,これが音源となって薄膜が厚さ方向に共振 する(膜厚方向に伸び縮みする振動).共振周波数 には厚さ方向の弾性定数の情報が含まれるため,こ の周波数を精度よく測定することができれば,弾性 定数が得られる.しかし,これは容易なことではな い.なぜなら,薄膜が薄いとき,厚さ方向の共振の 周期は非常に短く, ピコ秒オーダーであり, 通常の 計測装置ではこれほど短時間に起こる現象を観測す ることはできない.ところが,ピコ秒という時間は 光からすると決して短時間ではない.例えば,10 ピコ秒の間に光は3 mm も進むことができる.この ように,光速と音速が5桁以上も異なることを利用 して,ナノメートル・ピコ秒オーダーで起こる物理 現象をミリメートル・秒オーダーのマクロの計測法 によって正確にとらえることができる.

図1は,我々が構築した光学系の一例であり,上述のような計測を可能にする.チタン・サファイアパルスレーザー(波長800 nm)からの出力パルス光を偏光ビームスプリッタによりポンプ光とプローブ光に分離する.ポンプ光をコーナーリフレクタにより光路調整した後,試料表面に集光して超音波を励起する(励起される超音波の周波数はTHz域に及ぶ).プローブ光は,非線形光学結晶に通して倍波とした後(波長400 nm),さらに分離し,一方を参照光としてバランス検出器に取り込み,もう一方を試料に集光し,弾性波の検出に用いる.弾性ひずみによって光の反射率がわずかに変化するため,反

## 生産と技術 第63巻 第3号(2011)



射したプローブ光の振幅と位相は参照光のそれらと は異なる.その反射光を検出器に入力し,参照光の 成分を差し引いた出力を観測する.コーナーリフレ クタを移動してポンプ光の光路長を変化することに より,ポンプ光が入射してからプローブ光が試料表 面に照射されるまでの時間を変化させる.これによ り,超高速で起こる試料表面近傍のひずみ分布の時 間変化をプローブ光の反射率を介して測定すること ができる.

#### 3. Pt 薄膜の弾性定数の異常増加

極短パルス光を薄膜に照射すると,様々なモード の音響フォノン振動が生じる(鐘に瞬間的な衝撃を 与えると,多くの共振モードが発生する原理と同様). 膜厚が薄い(~<50 nm)とき,伝ぱしない定在波 モードが発生し,その振動の様子が反射率変化から 観測できる.例えば,図2は厚さの異なるPt薄膜 内において発生した共振現象の観測例である[4]. 観測した振動をFFT解析することにより,共振周 波数が得られ,これから薄膜の弾性定数が決まる. 薄膜の音響インピーダンスが基板のそれよりも大き いとき,基本モードの共振周波数をfとすると,膜 厚方向の弾性定数は

$$C = (2df)^2 \tag{1}$$

により得られる.ここで, は質量密度, *d* は膜厚 である.膜厚はX線反射率測定により正確に決定 することができる.

図3はPt薄膜の面直弾性定数Cの膜厚依存性で ある.図中の破線は多結晶体のバルク値である.薄 膜においては結晶粒間の不完全結合や非晶質部が存



在するために,一般に弾性定数はバルク値を下回る ことが多い.しかし,膜厚が20nmを下回るとPt の弾性定数は急激に増加し,バルク値を大きく上回 ることが明らかとなった.この原因は完全には解明 されていないが,膜厚が薄いことにより表面原子層 の占める割合が増加し,表面近傍の異常弾性が有意 に観測された可能性が高い.

## 生産と技術 第63巻 第3号(2011)

4.ブリルアン振動による薄膜の弾性定数測定 薄膜が透過・半透過性薄膜(酸化物や半導体など) のとき,以下に説明するブリルアン振動が観測され, この周波数から弾性定数を正確に決定することがで きる.この手法では膜厚測定を必要としないという 利点を有する.図4に原理の概念図を示す.試料表 面に10 nm 程度の薄いAI 薄膜を成膜しポンプ光を 照射して AI 部の熱膨張により膜厚方向に縦波超音 波を励起する.縦波は粗密波であり,物質内の電荷 密度もこれと同じ波長で分布する.つまり,屈折率 もこの波長で変化するために,光から見れば超音波 は回折格子となる.この状態からプローブ光が薄膜 内に入射されると一部は表面で反射するが, AI が 薄いため大部分は試料内に透過して超音波によっ て回折される、回折条件は、光の物質内での波長 ( <sub>0</sub>/n)が超音波の波長( <sub>a</sub>)の2倍に等しいと きである.ここでnはプローブ光の屈折率を表す. 超音波が薄膜内部へ進行すると,回折光は表面反射 光と干渉し,反射率に振動が生じる.この振動がブ リルアン振動である.プローブ光を試料表面に対し て垂直に入射するとき,ブリルアン振動の周波数 fBOは超音波の周波数と等しく,

$$f_{\rm BO} = \frac{2n_{a}}{a} \tag{2}$$

と表される [6, 10]. つまり, ブリルアン振動の周波 数と屈折率を測定することにより, 音速 <sub>a</sub>および 弾性定数 *C* が決まる.屈折率はエリプソメトリー 法によって測定することができる [11].

図5は,Si基板上に成膜したアモルファスSiO2 薄膜(膜厚は約1µm)の試料に対して観測された 反射率変化である.低周波の振動の後,高周波の振 動が観測されている.前者はSiO2薄膜からのブリ ルアン振動であり後者はSi基板からのそれである. SiはSiO2よりも屈折率と音速がともに大きく,そ のため,高い周波数のブリルアン振動が観測される. Si部の振動の減衰は,超音波の減衰ではなく光が 急激に減衰することによる.

図6に反応性スパッタリング法によって作成した アモルファスSiO2薄膜の弾性定数とスパッタリン グ電圧との関係を示す.薄膜の弾性定数はバルク値 を大きく上回っており,また,成膜条件に強く依存 することを示している.このように,薄膜の弾性定



数に対してバルク値を使用することができない場合 が多い.

5.おわりに

本稿で紹介したピコ秒レーザー超音波法は薄膜の 弾性定数測定に極めて有効な手法であり,非接触測 定のため他のいかなる測定法よりも精度は高いであ ろう.周波数がサブテラヘルツ域におよぶとはいえ, 原子間距離よりも波長は十分に長いため,結晶の分 散性は無視することができ,得られる弾性定数は通 常の数 MHz 域の超音波計測から得られる値とほぼ 等価である.

## 参考文献

1. N. Nakamura et al., J. Appl. Phys. 94, 6405 (2003).

## 生産と技術 第63巻 第3号(2011)

- 2. H. Ogi et al., Appl. Phys. Lett. 86, 231904 (2005).
- 3. N. Nakamura et al., Phys. Rev. B 77, 245416 (2008).
- 4. H. Ogi et al., Phys. Rev. Lett. 98, 195503 (2007).
- 5. H. Ogi et al., Appl. Phys. Lett. 90, 191906 (2007).
- 6. H. Ogi et al., Phys. Rev. B 78, 134204 (2008).
- 7. H. Ogi et al., Phys. Rev. B 82, 155436 (2010).
- 8. C. Thomsen et al., Phys. Rev. Lett. 53, 989 (1984).
- 9. C. Thomsen et al., Phys. Rev. B 34, 4129 (1986).
- 10. A. Devos and R. Côte, Phys. Rev. B 70, 125208 (2004).
- 11. R. Azzam and N. Basharra, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

