電子相関とバンド構造の協奏
〜高温超伝導の理解と物性予測をめざして〜

研究室紹介
Cooperation of electron correlation and band structure
〜towards understanding and predicting high temperature superconductivity〜

Key Words：superconductivity, electron correlation, band structure

1. はじめに

我々の研究室では「電子相関とバンド構造の協力効果」を一つのキーワードにして、物性物理学の理論研究を行っている。物理現象で分類すると、超伝導と高電（ゼーベック）効果が主たるテーマである。物性理論研究においては既存の実験結果の起源を解明することが重要なテーマとなるが、一方で、実験に先んじて新奇特性能を理論予測し、それが実験的に検証されれば、理論研究者としてはこの上ない喜びである。本稿では、このような観点も含めつつ、主に超伝導に焦点を当てる、これまでの研究室活動の概要と今後の展望を述べたい。

2. 超伝導とクーパー対形成

超伝導はカーマイン・オンネスによって1911年に水銀において発見され、以来、より高い超伝導転移温度（T_c）を持つ物質の探索が続けられてきた。理論的には1957年の、バークリー、クーパー、シュリーファーによるBCS理論によって、二つの電子間にフォノンを介在する相桝が働き、クーパー対が形成されて凝縮する事が超伝導の起源であることが解明されて、ひとまず検査をした。この理論によれば、超伝導状態ではフェルミ面上に超伝導ギャップ$\Delta(k)$が開く。逆格子空間におけるベアリング相互作用（クーパー対を形成する電子間相互作用）を$V(q)$とすると、フェルミ面上近傍にある電子対が$V(k-k')$によって$(k,-k)\rightarrow(k',-k')$と散乱される。このとき、$V(k-k')\Delta(k)\Delta(k')<0$を満たす$k,k'$が多いと$\Delta(k)$が低温で有限である。$\Delta(k)$が$k$によらない定数の場合、$V(q)<0$、すなわち引き相互作用でなければならないことがわかる。フォノンが媒介するベアリング相互作用は引力であり、この条件を満たす。

3. 鋼酸化物とハバード型

フォノン媒介機構はその後、詳細に研究され、そのT_c数は10K程度が上限であるとの予測もあった。実際、1985年までのT_c世界記録は20K程度にとどまっていた。ところが1986年に鋼酸化物高温超伝導体（図1左）が発見され[1]、ブレーカスルーを迎えた。T_cは瞬く間に100Kを超え、以来長らく世界記録を保ってきた。フォノン媒介型のベアリング機構の限界と考えられてきたT_cをはるかに凌駕したことから、電子相関を起源とする非フォノン型、あるいは「非従来型」のベアリング機構の可能性が考えられるようになった。

鋼酸化物では鋼が配位格子上にあり、一次元性が強い。母物質では3d軌道に9つの電子が存在するが、鋼を取り回す酸素が作り出す結晶面分裂によって、5つのd軌道間位は分裂し、エネルギーの低い4つの軌道に8つの電子が収容され、最もエネルギーの高いdx2-y^2軌道に一つの電子が入る。この状態では反強磁性秩序の線条体であるが、La(3+)の一部をSr(2+)に置換することにより、3d軌道（正確には、dx2-y^2軌道とそれと混成する酸素の軌道）から電子が抜け（ホールがドープされると、反強磁性が破れて金属的になり、温度を下げると超伝導が出現する。主たる鋼の軌道がdx2-y^2の一つのみであることから、これまでもしばしば単一軌道ハバ
ードモデルを採用する研究が行われてきた。この模型では正方格子上の各サイトに一つの軌道を配置し、電子はサイト間を飛び移ることができる。この飛び移りやすさは高階・パインデング近似のホッピング積分で与えられ、最絡接サイト間のt、第二絡接のt'などがある。これらのホッピング積分は、第一原理計算で得られるバンド構造を再現するように決めることができる。一方、第一原理計算においては十分に取り込まれない電子相互効果を取り込まないように、ハーバードモデルでは改めて電子間相互作用を考慮する。その最も単純な形は、一つのサイト上に向きを下向きのスピンの電子が来到了時にエネルギーがUだけ上る（オン・サイト圧力）とする。

ハーバード模型では電子間圧力のみを考慮し、フォノンによる電子間引力を無視する。この場合、単純にお村・サイト圧力Uをフーリエ変換しても$V(q)$は正の定数となってしまい、これでは超伝導ギャップは有限にならない。しかし、電子間相互作用を別の電子が媒介する「有効相互作用」を考えると、$V(q)$がある特定の波数$q \approx Q$近傍で正の大きな量になることを示すことができる。物理的には、これはスピン揺らぎ媒介によるベアリング相互作用と呼ばれる、磁気的な秩序相の近傍で強くなることが多い。波数Qはスピン秩序が起こる波数であり、鋼酸化物の場合は格子定数を1とする単位で$Q = (\pi, \pi)$である。一般にqはバンド構造によって強く支配され、フェルミ面のネスティングがよい場合、そのネスティング・ベクトル近傍で強くなることが多い。フェルミ面をあるベクトルだけずらすと、元のフェルミ面と重なりが大きいとき、ネスティングがよいという。}

このような、特定の波数近傍で大きくなる斥力的有効ベアリング相互作用がある場合は、図2に示すように、その波数ベクトル（今の場合は$Q = (\pi, \pi)$）の始点と終点間で$\Delta(k)$のギャップを反転させるところ、$V(k-k')\Delta(k)\Delta(k') < 0$を満たすことが可能となる。今の場合、超伝導ギャップは$k_x = \pm k_y$上で0（ノード）となり、90°回転に対して符号反転する。このような超伝導ギャップをdx^2-y^2波対称性という。実際、鋼酸化物においてはdx^2-y^2波が実現していることが実験的に検証されている。そして、ハーバード模型に対するいくつかの理論計算から、ホッピング積分tの1/100オーダーのT_cを持つdx^2-y^2波超伝導が実現することが示されている。tは1eV～10000Kの程度なので、これは$T_c \sim 100K$に相当する。

このような解析手法の一つとして揺らぎ交換近似という手法がある[2]。この手法を利用して、三角格子など様々な格子上のハーバードモデルを解析してみると……
と、正方格子の場合以外は 0.001 \tau 程度以下となることがあった [3]。\(T_c \sim 0.01 \tau \) というのは、電子の元来のエネルギーケースル \(\tau \) に比べると非常に低い温度であるが、スピン揺らぎ機構の中では、正方格子においてようやく到達できる「高温超伝導」であるといえる。

4. 非連続フェルミ面を持つ系における高温超伝導

我々はその後、\(T_c \sim 0.01 \tau \) を超えることは本当にできないのか検討した。正方格子では超伝導ギャップが符号反転することが必須であるが、それに伴って生じるノードは、超伝導の \(T_c \) を下げる。そこで、複数のネスティングの高い非連続フェルミ面がある系を考えて、そのネスティングベクトル近傍でスピン揺らぎが発達すれば、フェルミ面間では超伝導ギャップが符号変化するものので、フェルミ面内では定符号になり、高い \(T_c \) が得られる可能性があると考えた。実際、そのようなフェルミ面を実現する模型として、図3のような二層ハイパード模型を考えて前述の揺らぎ交換近似を適用すると、\(T_c \) は最大で 0.1 \tau 近くになることがわかった [4]。これは、もし \(\tau \sim 1 \text{eV} \) であれば、室温かそれ以上の高い \(T_c \) に相当する。ただし、実際にこのようなバンド構造やフェルミ面を実現するなんらかの物質が念頭にあったわけではなく、この段階ではいわば「おもちゃ」のような模型であった。

5. 鋼系超伝導

鋼とエフとを含む化合物 \(\text{LaFeAs(O,F)} \)（図1右）において、\(T_c = 26 \text{K} \)の超伝導が報告された [5]。この物質も鋼酸化物と同様層状の構造を有しており、FeAs 層と La(O,F) 層が交互に積層される。このいわゆる鋼系超伝導に関する研究は瞬く間に世界中の研究者たちを巻き込み、論文発表から数か月のうちに最高 \(T_c \) は 50K を超えた。その後、共通の鉄と素をもちながら結晶構造の異なる様々なバリエーションが発見された。理論研究も爆発的な勢いで行われるようになり、我々も \(\text{LaFeAs(O,F)} \) の論文発表を受けてすぐにバンド計算をしてみたところ、驚いたことに、ネスティングの高い複数の非連続フェルミ面があることがわかった。ただし、バンド構造は複雑であり、鋼酸化物の場合とは異なる。鋼の5つの3d軌道すべてがフェルミ面形成に影響する（図4）。この5軌道を取り込
んだモデルに対してスピン感受率を計算すると、確かにフェルミ面をじわじわステートの近傍でスビン揺
らぎが発達することがわかった [6]。実際、実験的
にLaFeAsO は反強磁性状態にあり、酸素の一部を
フッ素で置換することでFeAs 層に電子がドープ
され、反強磁性状態が消失して超伝導となる。スビ
ン揺らぎが超伝導の起源であれば、フェルミ面間で
超伝導ギャップの符号が反転する超伝導が期待され
る。中性子散乱など、様々な実験結果が超伝導ギャ
ップの符号反転を示唆する。ただし、このような超
伝導ギャップでは理解できないとする実験結果とそ
の解釈もあり、完全な決着には至っていない。

ところで、鉄系超伝導の T_c は物質ごとに大きく
変化する。例えばフッ素の代わりに水素を用いた
LaFeAs(O,H) では大量の電子ドープが可能となるが、
T_c はドープ量の関数として一度減少した後、再上
昇して二重に高くなるという変態を示す [7]。我々
はこの起源を二つの物質の δ 軌道模型に対する揺
らぎ交換近似を用いて検討し、上記の実験事実を説明
することに成功した [8]。詳細は省略するが、T_c
の物質依存性はα酸化物においても存在し、それつ
いても物質ごとにバンド構造の違いを取り込んだ揺
らぎ交換近似で説明することができる [9]。このよ
うに、既存高温超伝導体の T_c の物質依存性につい
ては、「電子相関とバンド構造の協力」という観点
からよく説明できることがわからってきた。

では鉄系超伝導とα酸化物を理論的に比べるとど
うだろうか。揺らぎ交換近似で比較する限り、α酸
化物のほうが高い T_c を与える。実際、鉄系超伝導
の T_c は発見から 8 年が経過した現在までのところ、
α酸化物を超えるには至っておらず、この点は実験
と理論計算は整合しているようにみえる。一方、前
述のように、鉄系超伝導と似た非連続フェルミ面を
持つ二層系ハバード模型は、理論上はα酸化物をも
超える T_c を与える。鉄系超伝導のベアリングの起
源がスビン揺らぎであれば、フェルミ面の非連続性
が高温超伝導発現に有利に作用していることは確かな
と思われるが、二層系ハバード模型ではどの高い T_c
が実現されるのかは、バンド構造の複雑性が関係し
ているものと考えている。

鉄系超伝導発見後、二層系ハバード模型の研究も
進み、極めて高い T_c が実現することができより確から
しくなってきた [10]。そのため我々は最近、この二
層系モデルを実現する実現物質の理論探索に力を入れ
はじめている。二層系だけであれば、例えばα酸化物
でも CuO2 面二枚を単位格子に含む物質は多く存
在する。しかし難しいのは、面間のホッピング積分
が面内よりも大きくなければならないということであ
る。一般に、既存の物質の第一原理バンド計算を
行って有効模型を構築することは容易にできるが、
その逆問題、すなわち、ある有効模型を実現するた
めの物質を理論的に探索することは難しい。物質デ
ータベースなどと連動した取り組みが必要として
いる。

6. 今後の展望

物性理論研究の重要な使命は、実験事実を理論的
に説明することであるが、その一方で、物理を予測
するという側面も重要性を増してきており、我々の
研究室でもこの方向性に高い関心を持っている。目
前に述べたように、我々の研究室では熱電効果の研
究も行っており、第一原理バンド計算に基づいたゼ
ーベック係数の計算などを行っている。経験的に、
このような計算はしばしば実験と定量的より一致
を示し、物理予測能力が高い。実際、最近、我々は
PtAs2という物質において、極めて高い熱電性能を
理論予測 [11]、実験的に検証されている [12]。

一方、本稿で概説した超伝導については、まだま
だ理論予測は難しいと一般的に考えられてきた。し
かし、その考えを覆す大きな出来事として、昨年、
H2S（あるいは H2S）に 200GPa の超高温をかける
ことによって、ついに 200K を超える T_c が達成され
た [13]。驚くべきことに、この結果は一昨年、第一
原理計算を駆使した理論計算によって定量的に予測
されていた [14]。超高温下の結晶構造まで予測し
てしまう近年の理論研究の進展は目覚ましいものが
あるといえる。ただし、この超伝導はフォノン媒介
型クーパー対形成によるものである。フォノン媒介
でここでその T_c は出るのとは、一つには、水素とい
う最も軽い原子の振動のため、フォノンのエネルギ
スクエールが大きくなるということがある。また、
フォノン媒介型超伝導の T_c 計算には通常、μ^*（電
子間に働くクリョン圧力が超伝導を阻害する度合い）
という経験的パラメータが必要であり、理論が実
験を定量的に予測したのは、この値を「偶然」適切な値にとっていたという見方もある。しかし、最近ではμを導入せずにフォノン媒介型超伝導のT_cを第一原理的に計算できる手法が確立されてきている。実験結果が出た後ではあるが、複数のグループがH2Sに対してそのような非経験的統計計算を行った結果、超高圧下における高温超伝導をほぼ定量的に再現することに成功している [15]。こうした結果を見ると、超伝導の理論研究はすごい時代に突入したと感じる。

このようなフォノン媒介型超伝導に比べると、電子相関を起源とする非従来型超伝導の理論研究はまだ難しい面が残されている。超伝導を論じる以前に、多電子系における電子相関の問題を正確に取扱うことは非常に難しいからである。だからこそ研究の進歩もある。近い将来、我々の理論研究が、新しい非従来型高温超伝導の発見に役立つことを夢見て、日々研究にいそしんでいる。

参考文献